Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils.

نویسندگان

  • Anders Priemé
  • Gesche Braker
  • James M Tiedje
چکیده

The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest.

Denitrification activity and bacterial community constituents were investigated in both well-drained and poorly drained soils of a temperate forest in central Japan by (15)N tracer experiments and a cloning-sequencing approach. Denitrification activity was much higher in wet soil than in dry soil, based on (15)N(15)N ((30)N(2)) and (15)N(15)NO ((46)N(2)O) production. Labeled nitrate ((15)NO(3)(...

متن کامل

Influence of the electron acceptor on nitrite reductase gene (nir) diversity in an activated sludge community.

Analyses of the nitrite reductase gene diversities (nirK and nirS) in an activated sludge community fed with both nitrite and glucose were conducted. Results suggest that the topology of nirK and nirS gene fragment-based phylogenetic trees is influenced more by the available electron acceptor than by the carbon source. A denitrification reactor was operated for 53 days and a clone library const...

متن کامل

Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems.

Investigation of the diversity of nirK and nirS in denitrifying bacteria revealed that salinity decreased the diversity in a nitrate-containing saline wastewater treatment system. The predominant nirS clone was related to nirS derived from marine bacteria, and the predominant nirK clone was related to nirK of the genus ALCALIGENES:

متن کامل

Genetic and functional variation in denitrifier populations along a short-term restoration chronosequence.

Complete removal of plants and soil to exposed bedrock, in order to eradicate the Hole-in-the-Donut (HID) region of the Everglades National Park, FL, of exotic invasive plants, presented the opportunity to monitor the redevelopment of soil and the associated microbial communities along a short-term restoration chronosequence. Sampling plots were established for sites restored in 1989, 1997, 200...

متن کامل

Nitrite reductase genes in halobenzoate degrading denitrifying bacteria.

Abstract Diversity of the functional genes encoding dissimilatory nitrite reductase was investigated for the first time in denitrifying halobenzoate degrading bacteria and in two 4-chlorobenzoate degrading denitrifying consortia. Nitrite reductase genes were PCR-amplified with degenerate primers (specific to the two different types of respiratory nitrite reductase, nirS and nirK), cloned and se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 68 4  شماره 

صفحات  -

تاریخ انتشار 2002